《Programming Bayesian Network Solutions with Netica》

 

 

作者:Owen Woodberry

出版社: Lulu Press, Inc.

出版时间:2014-04-07

ISBN:9781291812671

 

内容介绍

使用Netica编程贝叶斯网络解决方案提供了一个温和但完善的介绍,介绍了如何使用Netica-API在Java中编程贝叶斯网络。这本书假设了很少的编程经验和对贝叶斯网络的基本理解,因此适合大多数有兴趣学习如何创建基于贝叶斯网络的软件的人,从小型任务特定脚本到大型项目。

 

目录

1 Introduction

Workbook Overview

Workbook Legend

Running Examples and Exercises: Lung Cancer and Native Fish Problems

Loading the Netica Engine

Netica API Family

Fundamentals

2 Building Basic Bayesian Networks

Goals

Introduction

Creating Networks

Creating Nodes and Defining States

Defining Structure

Defining CPTs

Achievements

3 Basic Inference and Findings

Goals

Introduction

Compiling, Updating and Reading Beliefs

Entering Findings

Achievements

4 Decision Networks

Goals

Introduction

Creating Decision and Utility Nodes

Defining Utility Node Values

Reading Utilities

Achievements

5 Real Valued Nodes

Goals

Introduction

Discrete Nodes with Values

Continuous Nodes

Reading Real Values

Entering Real Findings

Achievements

6 Node Lists and Related Nodes

Goals

Introduction

Managing Lists of Nodes

Graph Searches

Achievements

7 NeticaEx

Goals

Introduction

NeticaEx Classes

Using NeticaEx

Useful NeticaEx Methods

Achievements

Data, Learning and Parameterization

8 Cases

Goals

Introduction

Case Files

Writing/Reading Streamer Case Files

The Caseset Class

Connecting to a Database

Achievements

9 Generating CPTs via Data

Goals

Introduction

Counting Learning from Data

Experience

EM and Gradient Descent Learning

Achievements

10 Generating CPTs via Equations

Goals

Introduction

Writing Equations

Setting Node Equations

Converting Equations to Tables

Constant Nodes

Achievements

Testing and Evaluation

11 Network Testing

Goals

Introduction

The NetTester Class

Error Rate

Confusion Matrices

Log Loss and Quadratic Loss

Achievements

12 Sensitivity Analysis

Goals

Introduction

Measuring Sensitivity

Mutual Information

Variance of Real

Achievements

Scaling up to Bigger Projects

13 Net Libraries

Goals

Introduction

Creating Net Libraries

Importing Net Libraries

Achievements

14 Extending Classes

Goals

Introduction

Extending Netica via Inheritance

The User Class

Storing and Retrieving Simple Data with User Objects

Storing Objects in User Objects

A Practical Extension Example: Verbal Probabilities

Achievements

15 Graphical User Interfaces

Goals

Introduction

Classes

Manipulating network style and layout

Java-based GUIs for BNs

Achievements

 

 

 

购买《Programming Bayesian Network Solutions with Netica》

热门产品

2023-06-02 15:35
首页    图书推荐——经管类    《Programming Bayesian Network Solutions with Netica》